
the first step towards debugging automation. It appears that
traditional methods of programming language semantics
definition don’t address this aspect.

In building such a model several considerations were taken in
account. The first assumption we make is that the model is
discrete, i.e. comprises a finite number of well-separated
elements. This assumption is typical for Computer Science
methods used for static and dynamic analysis of programs. For
this reason the notion of event as an elementary unit of action is
an appropriate basis for building the whole model. The event is
an abstraction for any detectable action performed during the
program execution, such as a statement execution, expression
evaluation, procedure call, sending and receiving a message, etc.

Actions (or events) are evolving in time and the program
behavior represents the temporal relationship between actions.
This implies the necessity to introduce an ordering relation for
events. Semantics of parallel programming languages and even
some sequential languages (such as C) don’t require the total
ordering of actions, so partial event ordering is the most
adequate method for this purpose [17].

Actions performed during the program execution are at
different levels of granularity, some of them include other
actions, e.g. a subroutine call event contains statement execution
events. This consideration brings to our model inclusion
relation. Under this relationship events can be hierarchical
objects and it becomes possible to consider program behavior at
appropriate levels of granularity.

Finally, the program execution can be modeled as a set of
events (event trace) with two basic relations: partial ordering
and inclusion. The event trace actually is a model of program’s
behavior temporal aspect. In order to specify meaningful
program behavior properties we have to enrich events with some
attributes. An event may have a type and some other attributes,
such as event duration, program source code related to the event,
program state associated with the event (i.e. program variable
values at the beginning and at the end of event), etc.

The next problem to be addressed after the program behavior

Abstract. This paper suggests an approach to the development
of software testing and debugging automation tools based on
precise program behavior models. The program behavior model is
defined as a set of events (event trace) with two basic binary
relations over events -- precedence and inclusion, and represents
the temporal relationship between actions. A language for the
computations over event traces is developed that provides a basis
for assertion checking, debugging queries, execution profiles, and
performance measurements.

The approach is nondestructive, since assertion texts are
separated from the target program source code and can be
maintained independently. Assertions can capture both the
dynamic properties of a particular target program and can
formalize the general knowledge of typical bugs and debugging
strategies. An event grammar provides a sound basis for assertion
language implementation via target program automatic
instrumentation. Event grammars may be designed for sequential
as well as for parallel programs. The approach suggested can be
adjusted to a variety of programming languages.

Keywords. Program behavior models, events, event
grammars, software testing and debugging

1 Introduction

Dynamic program analysis is one of the least understood
activities in software development. A major problem is still the
inability to express the mismatch between the expected and the
observed behavior of the program on the level of abstraction
maintained by the user [11]. In other words, a flexible and expres-
sive specification formalism is needed to describe properties of
the software system’s implementation. Program testing and
debugging is still a human activity performed largely without any
adequate tools and consuming more than 50% of the total pro-
gram development time and effort [10]. Debugging concurrent
programs is even more difficult because of parallel activities,
non-determinism and time-dependent behavior.

One way to improve the situation is to partially automate the
debugging process. Precise model of program behavior becomes

Building Program Behavior Models

Mikhail Auguston
Department of Computer Science

 New Mexico State University
Las Cruces, NM 88003-0001, USA

phone: (505) 646-5286, fax: (505) 646-1002
e-mail: mikau@cs.nmsu.edu

model is set up is the formalism specifying properties of the
program behavior. This could be done in many different ways, e.g.
by adopting some kind of logic calculi (predicate logic, temporal
logic). Such a direction leads to tools for program static
verification, or in more pragmatic incarnations to an approach
called model checking [13] As indicated in [1] “Dynamic analysis
is limited to checking observed behaviors, and so in principle
provides weaker assurances, but this is balanced by checking a
wider range of properties and typically by better performance”

Since our goal is debugging automation, i.e. a kind of program
dynamic analysis that requires different types of assertion
checking, debugging queries, program execution profiles, and so
on, we came up with the concept of a computation over the event
trace. It seems that this concept is general enough to cover all the
above mentioned needs in the unifying framework, and provides
sufficient flexibility. This approach implies the design of a special
programming language for computations over the event traces.
We suggest a particular language called FORMAN [2], [4], [15]
based on functional paradigm and the use of event patterns and
aggregate operations over events.

Patterns describe the structure of events with context
conditions. Program paths can be described by path expressions
over events. All this makes it possible to write assertions not only
about variable values at program points but also about data and
control flows in the target program. Assertions can also be used as
conditions in rules which describe debugging actions. For
example, an error message is a typical action for a debugger or
consistency checker. Thus, it is also possible to specify debugging
strategies.

The notions of event and event type are powerful abstractions
which make it possible to write assertions independent of any
target program. Such generic assertions can be collected in
standard libraries which represent the general knowledge about
typical bugs and debugging strategies and could be designed and
distributed as special software tools.

FORMAN is a powerful and general language to describe
computations over program event trace that can be considered as
an example of a special programming paradigm. Possible
application areas include program testing and debugging,
performance measurement and modeling, program profiling,
program animation, program maintenance and program
documentation [6]. A study of FORMAN application for parallel
programming is presented in [5]

2 Events

FORMAN is based on a semantic model of target program
behavior in which the program execution is represented by a set of
events. An event occurs when some action is performed during the
program execution process. For instance, a message is sent or
received, a statement is executed, or some expression is evaluated.
A particular action may be performed many times, but every

execution of an action is denoted by a unique event.

Every event defines a time interval which has a beginning and
an end. For atomic events, the beginning and end points of the
time interval will be the same. All events used for assertion
checking and other computations over event traces must be
detectable by some implementation (e.g. by an appropriate target
program instrumentation.) Attributes attached to events bring
additional information about event context, such as current
variable and expression values.

In order to give some support for our notion of event let us
consider a well-known idea such as a counter. Usually the history
of a variable X when used as a counter looks like:

X := 0; ...

Loop ...

X := X + 1; ...

endloop; ...

In order to check whether the actual behavior of the counter X
matches the pattern described by the program fragment above we
have to consider the following events. Let Initialize_X denote the
event of assigning 0 to the variable X, Augment_X denote the
event of incrementing X, and Assign_X denote an event of
assigning any value to the variable X. The event of the type
Assign_X is a composite one; it contains either Initialize_X or
Augment_X type events. One could check whether X behaves as
a counter when a program segment S is executed in the following
way. First, the sequence A of all events of the type Assign_X from
the event trace of program segment S has to be extracted
preserving the ordering between events. Second, A has to be
matched with the pattern:

Initialize_X (Augment_X) *

where’*’ denotes repetition zero or more times. If the actual
sequence of events does not match this pattern we can report an
error. Therefore, assertion checking can be represented as a kind
of computation over target program event trace.

Another informal example involves parallel events. Let us
suppose that Assign_Y denotes an event of assigning a value to
the shared variable Y through any of several parallel processes.
Then, detecting a set of events of the type Assign_Y that happen
“at the same time” (i.e. are not under the precedence relation) may
be evidence of a possible data-race condition in the program
execution.

The program state (current values of variables) can be
considered at the beginning or at the end of an appropriate event.
This provides the opportunity to write assertions about program
variable values at different points in the program execution
history.

Program profiling usually is based on counting the number of
events of some type, e.g. the number of statement executions or
procedure calls. Performance measurements may be based on
attaching the duration attribute to such events and summarizing

durations of selected events.

3 The Language for Computations Over
Event Traces

FORMAN is a high-level specification language for
expressing intended behavior or known types of error conditions
when debugging or testing programs. It is intended to be used in
conjunction with a high-level programming language which is
called the target language.

The model of target program behavior is formally defined
through a set of general axioms about two basic relations, which
may or may not hold between two arbitrary events: they may be
sequentially ordered (PRECEDES), or one of them might be
included in another composite event (IN). For each pair of events
in the event trace no more than one of these relations can be
established.

There are several general axioms that should be satisfied by
any events a, b, c in the event trace of any target program.

1) Mutual exclusion of relations.

a PRECEDES b => not (a IN b)
a IN b => not(a PRECEDES b)

2) Noncommutativity.

a PRECEDES b => not(b PRECEDES a)
a IN b => not(b IN a)

3) Transitivity.

(a PRECEDES b) and (b PRECEDES c) =>
(a PRECEDES c)

Irreflexivity for PRECEDES andIN follows from 2). Note that
PRECEDES is an irreflexive partial ordering.

4) Distributivity

(a IN b) and (b PRECEDES c) =>
(a PRECEDES c)

(a PRECEDES b) and (c IN b) =>
(a PRECEDES c)

(FOR ALL a IN b
(FOR ALL c IN d (a PRECEDES c)))

=> (b PRECEDES d)

In order to define the behavior model for some target language,
types of events are introduced. Each event belongs to one or more
of predefined event types, which are induced by target language

abstract syntax (e.g. execute-statement, send-message, receive-
message) or by target language semantics (rendezvous, wait, put-
message-in-queue).

The target program execution model is defined by an event
grammar. The event may be a compound object and the grammar
describes how the event is split into other event sequences or sets.
For example, the event execute-assignment-statement contains a
sequence of events evaluate-right-hand-part and execute-
destination. The evaluate-right-hand-part, in turn, consists of an
unique event evaluate-expression. The event grammar is a set of
axioms that describe possible patterns of basic relations between
events of different type in the program execution history, it is not
intended to be used for parsing actual event trace.

The rule A :: (B C) establishes that if an event a of the
type A occurs in the trace of a program, it is necessary that events
b and c of types B and C, also exist, such that the relations b IN
a, c IN a, b PRECEDES c hold.

For example, the event grammar describing the semantics of a
PASCAL subset may contain the following rules. The names,
such as execute-program, and ex-stmt in the grammar
denote event types.

execute-program :: (ex-stmt *)

This means that each event of the type execute-program
contains an ordered (w.r.t. relation PRECEDES) sequence of zero
or more events of the type ex-stmt.

ex-stmt :: (label? (ex-assignment |

ex-read-stmt | ex-write-stmt |

ex-reset-stmt | ex-rewrite-stmt |

ex-close-stmt | ex-cond-stmt |

ex-loop-stmt | call-procedure))

The event of the type ex-stmt contains one of the events
ex-assignment, ex-read-stmt, and so on. This inner
event determines the particular type of statement executed and
may be preceded by an optional event of the type label
(traversing a label attached to the statement).

ex-assignment ::

(ex-righthand-part destination)

The order of event occurrences reflects the semantics of the
target language. When performing assignment statement first the
right-hand part is evaluated and after this the destination event
occurs (which denotes the assignment event itself). The event
grammar makes FORMAN suitable for automatic source code
instrumentation to detect all necessary events.

An event has attributes, for instance, source text fragment from
the corresponding target program, current values of target
program variables and expressions at the beginning and at the end
of event, duration of the event, previous path (i.e. set of events

preceding the event in the target program execution history), etc.

FORMAN supplies a means for writing assertions about events
and event sequences and sets. These include quantifiers and other
aggregate operations over events, e.g., sequence, bag and set
constructors, boolean operations and operations of target language
to write assertions on target program variables.

Events can be described by patterns which capture the
structure of event and context conditions. Program paths can be
described by regular path expressions over events.

The main extension for the parallel case consists of the
introduction of a new kind of composite event -- “snapshot,”
which can be considered as an abstraction for the notion “a set of
events that may happen at the same time.” The “snapshot” event
makes it possible to describe and to detect at run-time such typical
parallel processing faults as data races and deadlock states.

All this makes it possible to formalize assertions of the
following types:

• “all variables in the program must be initialized before using
in some expression,”

• “file must be opened, then the read statement is performed
zero or more times and after that the close statement is
executed,”

• “at least one variable changes its value during one loop L
iteration,”

• “after the execution of a subprogram P the value of variable X
remains unchanged,”

• “there is an attempt to assign values to the same variable in
two parallel processes” (data race condition),

• “deadlock for parallel processes P1 and P2 is detected.”

In addition to debugging and testing, FORMAN can also be
used to specify profiles and performance measurements.

4 Examples of Debugging Rules and Queries

In general, a debugging rule performs some actions that may
include computations over the target program execution history.
The aim is to generate informative messages and to provide the
user with some values obtained from the trace in order to detect
and localize bugs. Rules can provide dialog to the user as well. An
assertion is a boolean expression that may contain quantifiers and
sequencing constraints over events.

Assertions can be used as conditions in the rules describing
actions that can be performed if an assertion is satisfied or
violated. A debugging rule has the form:

 assertion SAY (expression sequence)

ONFAIL SAY (expression sequence)

The presence of metavariables in the assertion makes it
possible to use FORMAN as a debugger query language. The

computation of an assertion is interrupted when it becomes clear
that the final value will be False, and the current values of
metavariables can be used to generate readable and informative
messages.

The following examples have been executed on our prototype
FORMAN/PASCAL assertion checker [3], [4]. The PASCAL
program reads a sequence of integers from file XX.TXT.

program e1;

var X: integer;

XX: file of text;

begin

X:= 7;

(* initial value is assigned here *)

reset (XX, ‘XX.TXT’);

while X<>0 do

read(XX, X)

end.

The contents of the file XX.TXT are as follows:

11 5 3 7 8 9 3 13 2 3 45 8 754 45567 0

Query 1. In order to obtain the history of variable X the
following computation over event trace can be performed. The
rule condition is TRUE, and is shown as a side effect the whole
history of variable X.

TRUE

SAY ('The history of variable X is:'

[D: destination IS X FROM execute_program

 APPLY VALUE(D)])

The [...] construct above defines a loop over the whole
program execution trace (execute_program event). All
events matching the pattern destination IS X are selected
from the trace and the function VALUE is applied to them. The
resulting sequence consists of values assigned to the X variable
during the program execution.

When executed on our prototype the following output is
produced:

Assertion #1 checked successfully...

The history of variable X is: 7 11 5 3 7 8
9 3 13 2 45 8 754 45567 0

Assertion 2. Let’s write and check the assertion : “The value of

variable X does not exceed 17.”

FOREACH *S: ex_stmt

CONTAINS (D: destination IS X)

FROM execute_program

VALUE(D) < 17

ONFAIL

SAY(‘Value ‘ VALUE(D)

‘is assigned to the variable X in stmt ‘)

SAY(S) SAY(‘This is record #’

CARD[ex_read_stmt FROM PREV_PATH(S)] + 1

‘in the file XX.TXT’)

We check the assertion for all events where the value of X may
be altered. These are events of the type destination which
can appear within ex_assignment_stmt or
ex_read_stmt events. In order to make error messages about
assertion violations more informative we include the embracing
event of the type ex_stmt. Metavariables S and D refer to those
events of interest. When the assertion is violated for the first time,
the assertion evaluation terminates and current values of
metavariables can be used for message output. The value of a
metavariable when printed by the SAY clause is shown in the
form:

event-type:> event-source-text

Time= event-begin-time .. event-end-time

Event begin and end times in this prototype implementation
are simply values of step counter.

Since we expect the assertion might be violated when
executing a Read statement, it makes sense to report the record
number of the input file xx.txt where the assertion is violated.
The program state does not contain any variables which values
could provide this information. But we can perform auxiliary
calculations independently from the target program using
FORMAN aggregate operations. In this particular case the
number of events of the type ex_read_stmt preceding the
interruption moment is counted. This number plus 1 (since the
violation occurs when the read statement is executed) yields the
number of an input record on which the variable X was first
assigned the value exceeding 17.

Assertion # 2 violation!

 Value 45 is assigned to the variable X in
stmt

ex_stmt :> Read(XX , X) Time= 73 .. 78

This is record # 11 in the file XX.TXT

Query 3. Profile measurement. In order to obtain the actual
number of statements executed, the following query can be

performed:

TRUE

SAY(‘The total number of statements
executed is:’

CARD[ALL ex_stmt FROM execute_program])

The ALL option in the aggregate operation indicates that all
nested events of the type ex_stmt should be taken into account.

Assertion #3 checked successfully...

The total number of statements executed
is: 18

Example of a generic assertion which must be true for any
program in the target language.

“Each variable has to be assigned value before it is used in an
expression evaluation.”

FOREACH * S: ex_stmt FROM execute_program

FOREACH * E: eval_expression

CONTAINS (V: variable) FROM S

EXISTS D: destination FROM PREV_PATH(E)

SOURCE_TEXT(D) = SOURCE_TEXT(V)

ONFAIL SAY(‘In event’ S)

SAY(‘in expression evaluation’)

SAY(E)

SAY(‘uninitialized variable’

SOURCE_TEXT(V) ‘is used’)

For the following PASCAL program our prototype detects the
presence of the bug described above.

program e2;

var X,Y: integer;

begin Y:= 3;

if Y < 2 then begin

X:= 7; Y:= Y + X

else Y:= X - Y

(*** here the error appears:

X has no value! ***)

end.

Assertion #4 violation!

In event ex_stmt :> If (Y < 2) then X :=

7 ; Y := (Y + X) ; else Y := (X - Y) ;
Time= 10 .. 35

in expression evaluation

eval_expression :> (X - Y) Time= 20 .. 29

uninitialised variable X is used

 Debugging rules can be considered as a way of formalizing
reasoning about the target program execution -- humans often use
similar patterns for reasoning when debugging programs. For
example, if the index expression of an array element is out of the
range, the debugger can try a rule for eval-index events that
invokes another rule about wrong value of the event eval-
expression, which in turn will cause investigation of histories of
all variables included in the expression.

Yet another application of generic assertions and debugging
rules may be for describing run-time constraints (sequences of
procedure calls, actual parameter dependences, etc.) for
nontrivial subroutine packages, e.g. for the MOTIF package for
GUI design. A library containing assertions and debugging rules
relevant to such a package may be useful for writing C programs
calling subroutines from the package.

5 Related Work

What follows is a very brief survey of basic ideas known in
Debugging Automation to provide the background for the
approach advocated in this paper. More references to related
work and a detailed survey may be found in [4]

5.1 Event Notion

The Event Based Behavioral Abstraction (EBBA) method
suggested in [8] characterizes the behavior of the whole program
in terms of both primitive and composite events. Context
conditions involving event attribute values can be used to
distinguish events. EBBA defines two higher level means for
modeling system behavior -- clustering and filtering. Clustering
is used to express behavior as composite events, i.e. aggregates
of previously defined events. Filtering serves to eliminate from
consideration events which are not relevant to the model being
investigated. Both event recognition and filtering can be
performed at run-time.

An event-based debugger for the C programming language
called Dalek [22] provides a means for description of user-
defined events which typically are points within a program
execution trace. A target program has to be instrumented in order
to collect values of event attributes. Composite events can be
recognized at run-time as collections of primitive events.

FORMAN has a more comprehensive modelling approach
than EBBA or Dalek, based on the event grammar. A language
for expressing computations over execution histories is provided,

which is missing in EBBA and Dalek. The event grammar makes
FORMAN suitable for automatic source code instrumentation to
detect all necessary events. FORMAN supports design of
universal assertions and debugging rules that could be used for
debugging of arbitrary target programs. This generality is missing
in EBBA and Dalek approaches. The event in FORMAN is a time
interval, in contrast with the event notion in previous approaches
where events are considered pointwise time moments.

5.2 Path Expressions

Data and control flow descriptions of the target program are
essential for testing and debugging purposes. It is useful to give
such a description in an explicit and precise form. The path
expression technique introduced for specifying parallel programs
in [12] is one such formalism. Trace specifications also are used
in [21] for software specification. This technique has been used in
several projects as a background for high-level debugging tools,
(e.g. in [11]), where path rules are suggested as kinds of debugger
commands. FORMAN provides flexible language means for trace
specification including event patterns and regular expressions
over them.

5.3 Assertion Languages

Assertion (or annotation) languages provide yet another
approach to debugging automation. The approaches currently in
use are mostly based on boolean expressions attached to selected
points of the target program, like the assert macro in C. The
ANNA [19] annotation language for the Ada target language
supports assertions on variable and type declarations. In the TSL
[18], [24] annotation language for Ada the notion of event is
introduced in order to describe the behavior of Tasks. Patterns can
be written which involve parameter values of Task entry calls.
Assertions are written in Ada itself, using a number of special pre-
defined predicates. Assertion-checking is dynamic at run-time,
and does not need post-mortem analysis. The RAPIDE project
[20] provides a reach event-based assertion language for software
architecture description.

In [7] events are introduced to describe process
communication, termination, and connection and detachment of
process to channels. A language of Behavior Expressions (BE) is
provided to write assertions about sequences of process
interactions. BE is able to describe allowed sequences of events as
well as some predicates defined on the values of the variables of
processes. Event types are process communication and
interactions such as send, receive, terminate, connect, detach.
Evaluation of assertions are done at run-time. No composite
events are provided.

Another recent experimental debugging tool is based on trace
analysis with respect to assertions in temporal interval logic. This
work is presented in [16] where four types of events are
introduced: assignment to variables, reaching a label, interprocess
communication and process instantiation or termination.
Composite events cannot be defined. Different varieties of

temporal logic languages are used for program static analysis
called Model Checking [13].

In [25] a practical approach to programming with assertions
for the C language is advocated, and it is demonstrated that even
local assertions associated with particular points within the
program may be extremely useful for program debugging.

The FORMAN language for computations over traces
provides flexible means for writing both local and global
assertions, including those about temporal relations between
events.

5.4 Algorithmic Debugging

The original algorithmic program debugging method was
introduced in [27] for the Prolog language. In [26] and [14] this
paradigm is applied to a subset of PASCAL.

The debugger executes the program and builds a trace
execution tree at the procedure level while saving some useful
trace information such as procedure names and input/output
parameter values. The algorithmic debugger traverses the
execution tree and interacts with the user by asking about the
intended behavior of each procedure. The user has the possibility
to answer “yes” or “no” about the intended behavior of the
procedure. The search finally ends and a bug is localized within a
procedure p when one of the following holds: procedure p
contains no procedure calls, or all procedure calls performed from
the body of procedure p fulfill the user’s expectations.

Algorithmic debugging can be considered as an example of
debugging strategy, based on some assertion language (in this case
assertions about results of a procedure call.) The notion of
computation over execution trace introduced in FORMAN may be
a convenient basis for describing such debugging strategies.

6 Conclusions

In brief, our approach can be explained as “computations over
a target program event trace.” We expect the advantages of our
approach to be the following:

• The notion of an event grammar provides a general basis for
program behavior models. In contrast with previous
approaches, the event is not a point in the trace but an interval
with a beginning and an end.

• Event grammar provides a coordinate system to refer to any
interesting event in the execution history. Program variable
values are attributes of an event’s beginning and end. Event
attributes provide complete access to each target program’s
execution state. Assertions about particular execution states
as well as assertions about sets of different execution states
may be checked.

• The PRECEDES relation yields a partial order on the set of
events, which is a natural model for parallel program
behavior.

• The IN relation yields a hierarchy of events, so the assertions
can be defined at an appropriate level of granularity.

• A language for computations over event traces provides a
uniform framework for assertion checking, profiles,
debugging queries, and performance measurements.

• The access to the complete target program execution history
and the ability to formalize generic assertions can be used in
order to define debugging rules and strategies.

• The fact that assertions and other computations over target
program event trace can be separated from the text of the
target program allows accumulation of formalized
knowledge about particular programs and about the whole
target language in separate files. This makes it easy to control
the amount of assertions to be checked.

According to [9] and [23] approximately 40-50% of all bugs
detected during the program testing are logic, structural, and
functionality bugs, i.e. bugs which could be detected by
appropriate assertion checking similar to the demonstrated above.

It appears that the approach initially designed for program
behavior modeling may be used in other dynamic system behavior
models as well. The methodology is based on identifying event
types representing essential actions performed within the system,
and defining the basic relations PRECEDES and IN for those
events (event grammar), and appropriate event attributes. Then
the FORMAN-like language for computations over event traces
may be developed to specify behavior properties, to perform
queries and other kinds of dynamic analysis.

References

[1] F. Anger, R. Rodriguez, M. Young, “Combining Static and
Dynamic Analysis of Concurrent Programs”, Proceedings of
International IEEE Conference on Software Maintenance,
Victoria, BC, Canada, Sept. 1994, pp.89-98.

[2] M. Auguston, “FORMAN -- A Program Formal Annotation
Language”, Proceedings of the 5:th Israel Conference on
Computer Systems and Software Engineering, Gerclia, May
1991, IEEE Computer Society Press, 149-154.

[3] M. Auguston, “A language for debugging automation”,
Proceedings of the 6th International Conference on Software
Engineering and Knowledge Engineering, Jurmala, June 1994,
Knowledge Systems Institute, pp. 108-115.

[4] M. Auguston, “Program Behavior Model Based on Event
Grammar and its Application for Debugging Automation”, in
Proceedings of the 2nd International Workshop on Automated
and Algorithmic Debugging, Saint-Malo, France, May 1995.

[5] M. Auguston, P. Fritzson, “PARFORMAN -- an Assertion
Language for Specifying Behavior when Debugging Parallel
Applications”, International Journal of Software Engineering
and Knowledge Engineering, vol.6, No 4, 1996, pp. 609-640.

[6] M. Auguston, A. Gates, M. Lujan, “Defining a program Behavior
Model for Dynamic Analyzers”, Proceedings of the 9th

International Conference on Software Engineering and
Knowledge Engineering, SEKE’97, Madrid, Spain, June 1997,
pp. 257-262

[7] F. Baiardi, N. De Francesco, G. Vaglini, “Development of a
Debugger for a Concurrent Language”, IEEE Transactions on
Software Engineering, vol. SE-12, No. 4, April 1986, pp. 547-
553.

[8] P. C. Bates, J. C. Wileden, “High-Level Debugging of Distributed
Systems: The Behavioral Abstraction Approach”, The Journal
of Systems and Software 3, 1983, pp. 255-264.

[9] B. Beizer, Software Testing Techniques, Second Edition,
International Thomson Computer Press, 1990.

[10] F. Brooks, The Mythical Man-Month, 2nd edition, Addison-
Wesley, 1995.

[11] B. Bruegge, P. Hibbard, “Generalized Path Expressions: A High-
Level Debugging Mechanism”, The Journal of Systems and
Software 3, 1983, pp. 265-276.

[12] R. H. Campbell, A. N. Habermann, “The specification of process
synchronization by path expressions”, Lecture Notes in
Computer Science, vol. 16, 1974, pp. 89-102.

[13] E.Clarke et al., “Verification tools for Finite State Concurrent
Systems”, LNCS vol.803, 1994, pp.124-175.

[14] P. Fritzson, N. Shahmehri, M. Kamkar, T. Gyimothy,
“Generalized Algorithmic Debugging and Testing”, ACM
LOPLAS -- Letters of Programming Languages and Systems.
Vol. 1, No. 4, December 1992.

[15] P. Fritzson, M. Auguston, N. Shahmehri, “Using Assertions in
Declarative and Operational Models for Automated
Debugging”, The Journal of Systems and Software 25, 1994,
pp. 223-239.

[16] G. Goldszmidt, S. Katz, S. Yemini, “Interactive Blackbox
Debugging for Concurrent Languages”, SIGPLAN Notices vol.
24, No. 1, 1989, pp. 271-282.

[17] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System”, Communications of the ACM, vol. 21, No.
7, July 1978, pp. 558-565.

[18] D. C. Luckham, D. Bryan, W. Mann, S. Meldal, D. P. Helmbold,
“An Introduction to Task Sequencing Language, TSL version
1.5” (Preliminary version), Stanford University, February 1,
1990, pp. 1-68.

[19] D. C. Luckham, S. Sankar, S. Takahashi, “Two-Dimensional
Pinpointing: Debugging with Formal Specifications”, IEEE
Software, January 1991, pp.74-84.

[20] D. Luckham, J. Vera, “An Event-Based Architecture Definition
Language”, IEEE Transactions on Software Engineering,
Vol.21, No. 9, 1995, pp. 717-734.

[21] J. McLean, “A Formal Method for the Abstract Specification of
Software”, Journal of the Association of Computing
Machinery, vol.31, No. 3, July 1984, pp. 600-627.

[22] R. Olsson, R. Crawford, W. Wilson, “A Dataflow Approach to
Event-based Debugging”, Software -- Practice and Experience,

Vol.21(2), February 1991, pp. 19-31.

[23] S. L. Pfleeger, Software Engineering, Theory and Practice,
Prentice hall, 1998.

[24] D. Rosenblum, “Specifying Concurrent Systems with TSL”, IEEE
Software, May 1991, pp.52-61.

[25] D. Rosenblum, “A Practical Approach to Programming With
Assertions”, IEEE Transactions on Software Engineering, Vol.
21, No 1, January 1995, pp. 19-31.

[26] N. Shahmehri, “Generalized Algorithmic Debugging”, Ph.D.
Thesis No. 260, Dept. of Computer and Information Science,
Linköping University, S-581 83 Linköping, Sweden, 1991.

[27] E. Shapiro, “Algorithmic Program Debugging”, MIT Press, May
1982.

